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Q-Learning

1

2

Mohammadamin Moradi,1 Yang Weng ,1 and Ying-Cheng Lai 1,2,*3
1 School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA

2 Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
4
5

 (Received 6 June 2022; revised 23 September 2022; accepted 10 October 2022; published XX XX 2022)6

A key to ensuring the security of smart electrical power grids is to devise and deploy effective defense
strategies against cyberattacks. To achieve this goal, an essential task is to simulate and understand the
dynamic interplay between the attacker and defender, for which stochastic game theory and reinforcement
learning stand out as a powerful mathematical and computational framework.Q2 Existing works are based
on conventional Q-learning to find the critical sections of a power grid to choose an effective defense
strategy, but the methodology is only applicable to small systems. Additional issues with Q-learning are
the difficulty in considering the timings of cascading failures in the reward function and deterministic
modeling of the game, while attack success depends on various parameters and typically has a stochastic
nature. Our solution for overcoming these difficulties is to develop a deep Q-learning-based stochastic
zero-sum Nash strategy solution. We demonstrate the workings of our deep Q-learning solution using the
benchmark Wood and Wollenberg 6-bus and the IEEE 30-bus systems; the latter is a relatively large-scale
power-grid system that defies the conventional Q-learning approach. Comparison with alternative rein-
forcement learning methods provides further support for the general applicability of our deep Q-learning
framework in ensuring secure operation of modern power-grid systems.Q3
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I. INTRODUCTION22

Electric power grids, a critical infrastructure, are vul-23
nerable to random failures and, more alarmingly, to hostile24
physical and/or cyberattacks that can often trigger large-25
scale cascading types of breakdowns. The US-Canadian26
blackout in 2003 affected approximately 50 million people27
in eight US states and two Canadian provinces. In the same28
year, there were two other significant blackouts in Europe29
[1]. The gigantic impacted geophysical area of these events30
and the economic consequences highlight the need for31
developing effective defense strategies against attacks on32
the power grids. In the past two decades, research on cyber-33
security systems has attracted increasing attention. An34
important requirement is to make these systems automated35
and “intelligent,” as many power grids are unmanned and36
located in isolated, remote, rural, or mountainous areas [2].37
In the field of cyberphysical systems and security, the year38
2010 was a turning point, when the first ever cyberwarfare39
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weapon, known as Stuxnet [3], was created. Documented 40
significant events of cyberattacks include a synchronized 41
and coordinated attack in December 2015, which compro- 42
mised three Ukrainian regional electric power distribution 43
companies and resulted in power outages affecting approx- 44
imately 225 000 customers for several hours [4]. Due 45
to the extraordinarily large scale and complexity of the 46
power-grid networks, developing effective defense strate- 47
gies against attacks to prevent breakdown of the networks 48
has become one of the most challenging problems of inter- 49
disciplinary research in science and engineering in the 50
present time. In this regard, a pioneering approach is to 51
use state estimation to detect the attack modes to power 52
systems [5,6], assuming that the topology and parameters 53
are known to both the attacker and defender in the trans- 54
mission grid. Recently, this approach was extended to the 55
distribution grid [7,8]. It is also recognized that attacks are 56
possible, even if the attackers do not know the topology 57
and parameters of the distribution grid [9]. 58

From a general and mathematical point of view, cyber- 59
security is determined by the dynamic interplay between 60
the attacker and the defender, where the former seeks to 61
maximize, while the latter strives to minimize, damage 62
to the power grid. Game theory [10], a well-established 63
branch of mathematics for analyzing strategic interac- 64
tions among rational players, thus represents a powerful 65
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tool to probe the dynamics of cybersecurity, where the66
attacker-defender interactions can be modeled as a nonco-67
operative game. There are two categories of such games:68
static and dynamic. In a static game, time and informa-69
tion do not affect the action choice of the players, so the70
game can be regarded as a one-shot process, in which71
the players take their actions only once. In contrast, in a72
dynamic game [11], the players have some information73
about each other’s choices and can act more than once,74
where time plays a central role in the decision-making.75
Different game-theoretic techniques have been devised to76
study the security of smart grids, such as the network77
formation game technique used in smart grid communica-78
tions systems, the Nash game and auction game methods79
in demand-side management applications, and coalition80
games used in microgrid distribution networks [12].81

Recently, machine learning has been introduced to study82
the security of smart power grids. For example, in Ref.83
[13], the most vulnerable areas in a power grid are iden-84
tified using unsupervised learning. Several state-of-the-art85
machine-learning techniques have been devised to gener-86
ate, detect, and mitigate cyberattacks in smart grids [14].87
As one of the most developed machine-learning frame-88
works, reinforcement learning (RL) has proven to be par-89
ticularly useful for cybersecurity systems. Specifically, RL90
is employed to derive false data injection attack policies91
against automatic voltage control systems in power grids92
[15]. In Ref. [16], a RL-based strategy was introduced93
that aimed to choose the appropriate detection interval and94
the number of CPUs allocated based on the defense pref-95
erences through implementation inside the control center96
of the power grid. Moreover, Q-learning [17] is used to97
analyze the vulnerability of smart grids against sequen-98
tial topological attacks, where the attacker can use Q-99
learning to worsen the damage of sequential topology100
attacks toward system failures with the least effort [18].101
A fundamental difficulty with Q-learning is that it can102
become extremely inefficient in the case of increasing103
numbers of state-action pairs, as in a larger power grid. To104
overcome this difficulty, deep RL has been employed in105
large-scale power grids for topology attacks [19]; cyber-106
attack mitigation [20]; and, more recently, to solve the107
latency cyberattack detection problem [21]. In general,108
deep Q-learning [22] uses neural networks to approximate109
the Q function using only the state as the input and generate110
the Q values of all actions as the output. As a result, deep111
Q-learning is suited to problems with a large state-action112
space, since it leverages the extent of deep neural net-113
works to deal with complex cyberphysical systems, such114
as the IEEE 30-bus system. Figure 1 provides a schematic115
comparison of Q-learning and deep Q-learning.Q4 116

Here, we develop a deep Q-learning-based defense strat-117
egy for smart power-grid systems using transmission line118
outages and generation loss as the concrete failure set-119
tings. Broadly, we conceive the scenario in which the120
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FIG. 1. Q-Learning versus deep Q-learning. Implementation
of the Q table is the main difference between Q-learning and
deep Q-learning. Instead of mapping a state-action pair to a Q
value using the Q table, as is done in Q-learning, deep Q-learning
uses neural networks to map the states to the action-Q value
pairs—the core reason that deep Q-learning can be used to solve
large-scale problems. Q5
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defense management of a given large power grid performs 121
stochastic game playing to simulate the dynamic inter- 122
play between the attacker and the defender. The goal is 123
to uncover the “best” attack strategies that can result in 124
the maximal damage to the grid. Accordingly, protect- 125
ing the components in the grid that such attack strategies 126
entail provides the optimal defense tactics. We model the 127
attacker-defender interaction as a zero-sum game and solve 128
it by using deep Q-learning, where solving a game entails 129
finding its Nash equilibria (see Sec. II B for details). We 130
introduce a customized reward function for achieving the 131
desired objectives as directly as possible. Importantly, we 132
demonstrate that our deep Q-learning framework can be 133
used to address problems of cascading failures and tim- 134
ing delays, which, to the best of our knowledge, have 135
not been studied previously in the context of machine- 136
learning-enhanced or guaranteed security of power grids. 137
Our defense algorithm leads to the best protection sets 138
based on the defined objectives, taking into considera- 139
tion the defender’s policy. To demonstrate the workings 140
and advantages of our deep Q-learning scheme, we com- 141
pare its performance not only with the conventional Q- 142
learning method but also with other state-of-the-art algo- 143
rithms, such as actor-critic (AC), policy gradient (PG), 144
and proximal policy optimization (PPO). Overall, our deep 145
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Q-learning approach opens the door to applying RL to146
large-scale smart grid cybersecurity problems to signifi-147
cantly enhance the security of the system in an automated148
manner.149

The rest of this paper is organized as follows. The RL150
formulation of the attacker-defender stochastic zero-sum151
game, problem description, reward function definition,152
and an illustration of why Q-learning is not viable for153
large-scale problems are given in Sec. II. In Sec. III, we154
formulate our deep Q-learning method and present the155
optimal defense strategy. Simulation scenarios and com-156
parative results are detailed in Sec. IV. Section V presents157
a discussion.158

II. REINFORCEMENT-LEARNING-BASED159
FORMULATION OF ATTACKER-DEFENDER160

GAME161

We describe the essential quantities needed for modeling162
the attacker-defender interactions using a stochastic zero-163
sum game and Q-learning algorithm. We then define the164
reward function based on the objectives of the attack sce-165
narios. The efficiencies of Q-learning and deep Q-learning166
are compared using an illustrative example. In the formu-167
lation below, player 1 is the attacker, while player 2 is the168
defender.169

A. Attacker-defender stochastic zero-sum game and170
Nash equilibrium171

A game is closely related to a Markov decision process172
that can be viewed as a single-player decision problem, so173
its extension to two players results in a stochastic game174
[23]. Mathematically, a two-player stochastic zero-sum175
game is a sextuple 〈S, A1, A2, r1, r2, p〉, where S is the dis-176
crete state space, Ai is the discrete action space of player i177
(for i = 1, 2), ri:S × A1 × A2 → R is the payoff function178
for player i, whereas r1(s, a1, a2) = −r2(s, a1, a2) for all179
s ∈ S, a1 ∈ A1, a2 ∈ A2. For the cases studied in this work,180
intuitively, rewards are the game payoffs that are either the181
generation loss caused by the attacks or a function of the182
transmission line outages [cf., Eq. (10) below]. Moreover,183
p : S × A1 × A2 → !(S) is the transition probability map-184
ping, with !(S) being the set of probability distributions185
over the state space, S. During a game, player 1 aims to186
maximize, but player 2 strives to minimize, the sum of the187
discounted rewards. Given an initial state s, discount fac-188
tor γ , and π1 and π2 (the strategies of players 1 and 2,189
respectively), the values of the game for the two players190
are191

v1(s, π1, π2) =
∞∑

t=0

γ t E{r1
t |π1, π2, s0 = s}, (1)192

v2(s, π1, π2) =
∞∑

t=0

γ t E{r2
t |π1, π2, s0 = s}, (2)193

where π1,2 = (π
1,2
0 , . . . , π1,2

t , . . .), with π
1,2
t denoting the 194

decision rules of players 1 and 2 at time t and E{.} is the 195
conditional expectation. For instance, E{ri

t|π1, π2, s0 = s} 196
is the expectation of the player i’s instant reward at time 197
t, following the decision rules π1,2 with s as the initial 198
state. These strategies are “stationary,” in the sense that the 199
decision rules are fixed over time, in contrast to the “behav- 200
ior” strategies often used in economics, where the decision 201
rules depend on the history of states and the actions up 202
to the present time. Assuming each player has complete 203
information about the reward function of the other player, a 204
Nash equilibrium can emerge. Specifically, the Nash equi- 205
librium for a two-player stochastic zero-sum game is a pair 206
of strategies, (π1

∗ , π2
∗ ), such that for all s ∈ S, the following 207

hold: 208

v1(s, π1
∗ , π2

∗ ) ≥ v1(s, π1, π2
∗ ) ∀π1 ∈ $1, (3) 209

210

v2(s, π1
∗ , π2

∗ ) ≥v2(s, π1
∗ , π2) ∀π2 ∈ $2, (4) 211

where $i is the set of all possible policies for player i. 212
Intuitively, a Nash equilibrium means that each player’s 213
strategy is the best response to the other player’s strategy: 214
neither one has anything to gain by changing only their 215
own strategy. 216

In general, based on the structure of the information that 217
the players possess, attacker-defender stochastic zero-sum 218
games can be classified into four categories, depending on 219
whether the information is complete or incomplete, per- 220
fect or imperfect. In particular, in a complete information 221
game, the players know the structure of the game being 222
played, such as the number of players and their payoff 223
functions. Any missing information will lead to an incom- 224
plete information game. In addition, a game is regarded 225
as being of the perfect information type if all the players 226
know the historical actions of each other at the time of their 227
move; otherwise, the game is of the imperfect information 228
type [24]. For simplicity, in our work, we assume both the 229
attacker and defender can observe each other’s immedi- 230
ate reward and have access to their actions throughout the 231
learning process. This assumption, while ideal and offering 232
mathematical convenience, is based on the consideration 233
that the goal of our work is to solve the attacker-defender 234
stochastic zero-sum game for defensive planning. In fact, 235
our aim is to find the best scenario for the attacker, so 236
that the defender can be prepared for the worst, and thus, 237
assuming the availability of complete information may not 238
be unreasonable. Possible scenarios to obtain the required 239
information include the observation of the state of the 240
transmission lines by the defender, the defender’s access 241
to the resulting generation loss when an attack happens, 242
and some insider information about the defender obtained 243
by the attacker. 244
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B. Q-Learning-based solution to attacker-defender245
stochastic zero-sum game246

Reinforcement learning belongs to the field of decision-247
making, where the “agent” explores the “environment,”248
interacts with it, and observes its reactions to find an249
optimal behavior to maximize a long-term “reward.” Con-250
trary to supervised learning, in RL, the agent must act251
independently to find an optimal sequence of actions that252
maximizes a given reward function in an unknown envi-253
ronment.254

While RL is capable of directly solving certain cyber-255
security problems, it can also serve as a powerful vehicle256
to gain insights into the attacker-defender interactions257
modeled as a game. In general, solving a game means258
finding its Nash equilibria. Especially, an appealing fea-259
ture of RL is that it can yield solutions (Nash equilibria) of260
both the attacker-defender interplay and cybersecurity in261
a knowledge-free manner, i.e., based solely on data. For262
example, the Nash equilibrium for the two-player zero-263
sum game can be determined online based on RL [25].264
RL has also been employed to solve a zero-sum stochastic265
game [26]. The min-max solutions of a dynamic Markov266
zero-sum game are derived using Q-learning [27], yielding267
optimal risk management strategies to meet the perfor-268
mance criteria with the parameters of the Markov game269
model completely unknown. A distributed RL algorithm270
is proposed to solve a non-zero-sum stochastic game in271
which each player needs only minimal information about272
the other player [28]. RL is also used in a stochastic adver-273
sarial game coupled with an expert advice framework to274
analyze the optimal attack strategies against predictors275
[29]. While game theory has been applied to many prob-276
lems that require rational decision-making, there are some277
limitations in applying such methods to security games. Q-278
Learning was introduced to secure the system by devising279
proper actions against the adversarial behavior of a sus-280
picious user [30]. Q-Learning has also been employed in281
solving security games, as studied in Refs. [31,32].282

In Q-learning, the Q function is a mapping of all possi-283
ble state-action pairs (where actions refer to action profiles284
of each player) to a scalar value and represents the total285
discounted reward that a player is expected to obtain, start-286
ing from a determined state taking a specified action. For287
a two-player stochastic game, the optimal Q function for288
each player can be defined as289

Q1
∗(s, a1, a2) = r1(s, a1, a2)290

+ γ

N∑

s′=1

p(s′|s, a1, a2)v1(s′, π1, π2), (5)291

Q2
∗(s, a1, a2) = r2(s, a1, a2)292

+ γ

N∑

s′=1

p(s′|s, a1, a2)v2(s′, π1, π2), (6)293

where s′ is the next state evolving from state s taking 294
actions a1 and a2. Equations (5) and (6) define Q∗, the 295
optimal value of the Q function associated with state 296
s and action pair (a1, a2). For each player, the optimal 297
value is equal to the total discounted reward received by 298
the player, when both the attacker and defender perform 299
actions (a1, a2) in state s and subsequently follow their 300
Nash equilibrium strategies (π1, π2). For each player, the 301
value of Q∗ can be solved [Eq. (8)]. A player then gen- 302
erates a policy by following the action with the largest Q 303
value in each state. 304

We remark that, in the reinforcement learning litera- 305
ture, the notation r is usually reserved for “instant reward” 306
or “instant payoff,” whereas v is the “value function.” In 307
Eq. (5), the term r1(s, a1, a2) means the instant payoff that 308
player 1 gets when the game is in state s and player 1 309
chooses action a1 while player 2 selects action a2. The 310
quantity v1(s′, π1, π2) denotes the total discounted payoff 311
starting from the next state s′ while the players follow the 312
policies π1 and π2. Thus, Q1

∗(s, a1, a2) in Eq. (5) represents 313
the instant reward added to the best possible future rewards 314
for player 1. Intuitively, this means the best reward player 315
1 can achieve starting from state s with the two players 316
taking actions a1 and a2, respectively. 317

Because of the zero-sum nature of the game, 318
Q1

∗(s, a1, a2) + Q2
∗(s, a1, a2) = 0, or 319

Q1
∗(s, a1, a2) = −Q2

∗(s, a1, a2), (7) 320

the learning agent needs to learn (or approximate) only 321
one Q function. This should be contrasted with a general 322
sum game characterized by Q1

∗(s, a1, a2) + Q2
∗(s, a1, a2) ,= 323

0, where two Q functions need to be learned, increasing 324
substantially the computation complexity. To solve Eqs. 325
(5) and (6), we use the following algorithm [23]: 326

Qt+1(s, a1, a2) = (1 − αt)Qt(s, a1, a2) 327

+ αt

[
rt + γ max

π1(s′)∈σ (A1)
min

π2(s′)∈σ (A2)
π1(s′)Qt(s′)π2(s′)

]
,

(8)

328

where Qt+1(s, a1, a2) = Q1
t+1(s, a1, a2). Convergence 329

requires that all state-action pairs be visited infinitely often, 330
which is practically infeasible. To obtain a reasonable 331
functional approximation, a sufficiently large state-action 332
space needs to be explored. This is the main reason that 333
prevents Q-learning from being applicable to large-scale 334
smart grids. 335

C. Transmission line outage, generation loss, and 336
reward functions 337

We focus on two representative attack scenarios on 338
smart power grids [33–35]. The first is the switching line 339
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problem, where the attacker attempts to cause a predeter-340
mined percentage of the transmission lines to go down. In341
the second scenario, the attacker attempts to maximize the342
generation loss in the power system through a sequence of343
attacks. In both cases, the defender strives to mitigate the344
attack consequences, regardless of whether they are due to345
transmission line outages or are caused by generation loss.346
[We use a dc load flow simulator of cascading (separation)347
in power systems, named DCSIMSEP [33,34], to calculate348
the generation loss.] The state space for both attacks is349
the state of transmission lines denoted as a l × 1 binary-350
valued vector, where l is the number of transmission lines;351
this value for each transmission line is 0 if the respective352
line is down and is 1 otherwise. The attacker’s actions for353
both attacks are chosen from the set A = {1, 2, 3, . . . , l},354
where action i means attacking transmission line i. The355
defender’s action for both attacks is considered to be a356
set consisting of n transmission lines, denoted as the pro-357
tection set. The attacker’s reward for the line switching358
attack is given by Eq. (10) and for the generation loss359
attack is the average generation loss [Eq. (9)] caused by360
the attack. Since the game is considered to be zero sum,361
for the defender, the payoff is the negative of the attacker’s362
reward for both attacks. The transition probability distri-363
bution is represented with power-grid transitions simulated364
with the DCSIMSEP tool.365

We incorporate the cascading failure timing into the366
reward function. We assume that the attacker’s next attack367
will be launched at time T = 1.2tcas, where tcas is the368
cascading failure length caused by the attacks. The propor-369
tional constant 1.2 is chosen somewhat arbitrarily, insofar370
as it is greater than 1, so that the system settles into a371
steady state after an attack on the transmission lines. The372
choice of the value T does not have a significant effect373
because the generation loss is relative among different374
attacks and our goal is to minimize the total loss. To take375
into account the timing delays of the cascading failures, we376
use a weighted average of generation loss during a reason-377
able time interval. Specifically, the average generation loss378

¯Gloss is379

¯Gloss = Ginit
loss

tcas

T
+ Gstead

loss
T − tcas

T
, (9)380

where Ginit
loss is the generation loss caused initially by the381

attack, while Gstead
loss represents the generation loss during382

the steady state of the system after a transient phase caused383
by the attack. The reason is that, after an attack, the power384
grid will enter into a transient state, during which cascad-385
ing failures occur. We assume that the defender’s policy386
is passive while the attacker’s policy evolves according to387
deep Q-learning (as described in Sec. II D). The defender’s388
protection set is updated at the end of each run, mean-389
ing that the attacker must learn the optimal sequences in390
a constantly updated environment. In general, the defender391

is not able to protect all lines simultaneously because of 392
limited resources. This highlights the need for Q-learning 393
because the defender should wisely select the set of lines 394
to protect. 395

For the first attack scenario, the reward function is given 396
by 398

r = r1, for IO > AO,

r = r2, if attack is final,

r = IO/AO, otherwise,

(10) 399

where IO is the instant number of transmission line out- Q6400
ages caused by the attack, AO is the attack objective,

Q7
401

and r1 > r2. For example, in the Wood and Wollenberg 402
(W&W) 6-bus system shown in Fig. 2, when the protec- 403
tion set consists of lines 1 and 2, attacking line 5 will cause 404
an instant outage of five lines (IO = 5), which is more than 405
the attack objective (AO = 4). In this case, the reward of 406
attacking line 5 is equal to r1. This is the best scenario, and 407
therefore, r1 is chosen to be large enough to persuade the 408
agent to learn this action, if possible. This will also lead to 409
Ginit

loss = 210 MW and Gstead
loss = 83.5 MW, and the cascad- 410

ing failure length is tcas = 331.61 s. The cascading failure 411
timing delays caused by attacking line 5 in the W&W 6- 412
bus system are illustrated in Fig. 3. Equation (9) provides 413
the average generation loss, taking into account the timing 414
delay of cascading failures as ¯Gloss = 167.83 MW. Like- 415
wise, attacking line 3 will cause lines 1, 2, and 3 to go 416
down, leading to the reward r = 3/4. Eventually, if the 417
number of currently downed transmission lines is less than 418
AO, but an attack causes the number of downed lines to be 419
equal to or larger than AO, the attacker will have achieved 420
the objective in this specific step, executing the chosen 421
action. In this case, the attack is called final and the reward 422
is r2, as the attacking agent is motivated to take the final 423
blow when an opportunity rises. 424

D. Necessity of deep Q-learning 425

A standard way to implement Q-learning is through the 426
sample base variant called “tabular Q-learning.” In a Q 427
table, the rows list the states of the underlying system, 428
and the columns are indexed by the action set. Training 429
the table is helpful in finding an optimal action for each 430
state with the goal of maximizing the long-term reward. 431
This is a straightforward yet powerful approach to the 432
security of small cyberphysical systems. For example, a 433
one-shot game with a multiline switching attack between 434
the attacker and defender in a smart grid was studied 435
[36]. In another work [37], the dynamics of the electric 436
power grid were taken into account and the attacks were 437
modeled as a multistage game, where the percentage of 438
visited states with respect to the total number of states 439
was 1.81% for the W&W 6-bus system (37 states out of 440
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FIG. 2. Wood and Wollenberg 6-bus system. It has 6 buses, 3
generators (denoted by G), 3 loads (denoted by L), and 11 trans-
mission lines. IEEE 30-bus system simulated in this paper has
a similar topological structure but at a much larger scale: it has
6 generators, 30 buses, and 41 transmission lines. Simulation of
the smart power grids (they are “smart” because they support
renewable sources) is performed using the DCSIMSEP package, a
simulator of cascading failures in power systems. DCSIMSEP does
not use any specific stress-mitigating controls under the assump-
tion that the cascades are propagating too fast for the operators
to react, so it is suitable for cyberattack problems.

F2:1
F2:2
F2:3
F2:4
F2:5
F2:6
F2:7
F2:8
F2:9

F2:10
F2:11

a possible 211 states) and 1.87 × 10−8% for the IEEE 39-441
bus system (13 130 states out of a possible 246 states).442
The tabular Q-learning method is thus incapable of suffi-443
cient state-space exploration, leading to suboptimal poli-444
cies for the given reward functions. In general, for larger445
power-grid systems, such as the benchmark IEEE 30-bus446
system that has 41 transmission lines, tabular Q-learning is447
impractical. This is because each line has two states, opera-448
tional or out of service, so there are 241 number of states for449
all the transmission lines. If only a single line is attacked,450
the total number of actions is 41. Because there are 241451

states for each action, the table will have 241 × 41 cells, 452
rendering infeasible any computation based on the table. 453

To appreciate the necessity of adopting deep Q-learning 454
in tackling the cybersecurity problem of smart power- 455
grid systems in a concrete way, we use the switching line 456
problem as a prototypical example. For the W&W 6-bus 457
system, consider the specific formulation in which AO is 458
4, the protection set is [1, 2], the maximum number of 459
attacks is 4, and the reward function is given by Eq. (10) 460
with r1 = 4 and r2 = 1. The optimal attacking sequence 461
derived using Q-learning after 20 independent runs (each 462
with 2000 episodes) is to attack line 5, which will lead to 463
a maximum reward of 4. However, the optimal attacking 464
sequence derived using deep Q-learning is to attack line 465
9, then line 8, and finally line 6. In particular, the outage 466
of line 9 will lead to reward r = 0.25; attacking line 8 will 467
bring down lines 8 and 4 together, so the reward is r = 0.5; 468
and disabling line 6 will cause lines 1, 2, 3, 6, 10, and 11 to 469
go down, leading to the reward r = 4. As a result, the deep 470
Q-learning strategy will result in a total reward of 4.75. A 471
detailed comparison of the rewards achieved as a function 472
of time from executing the optimal attack strategies from 473
Q-learning and deep Q-learning is shown in Fig. 4. It can 474
be seen that, while there is a brief time period (between 200 475
and 500 episodes of the game) in which the reward of Q- 476
learning is greater than that of deep Q-learning, after 500 477
episodes, deep Q-learning leads to a persistently higher 478
reward than Q-learning. 479

The main reason that the tabular Q-learning results in 480
lower reward in the long run lies in insufficient state-space 481
exploration, generating a suboptimal policy for the defined 482
reward function. In a larger power grid, such as the IEEE 483
30-bus system that has 41 transmission lines, there are 241 484
distinct states. Practically, a state space of this large size 485
cannot be solved using conventional tabular Q-learning 486
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FIG. 3. Cascading failure timing delays caused by attacking line 5 in the W&W 6-bus system derived using DCSIMSEP package.
Average generation loss ( ¯Gloss) caused by this attack can be calculated using these timings in Eq. (9).
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FIG. 4. Comparison of the performance of deep Q-learning
and conventional tabular Q-learning using a concrete exam-
ple. Setting is the switching line problem in the W&W 6-bus
system. Shown are the values of reward function [Eq. (10)
with r1 = 4 and r2 = 1] from deep Q-learning and conventional
Q-learning with similar simulation parameter values. Deep Q-
learning algorithm manages to find an optimal attack sequence,
which results in the reward of r = 4.75, while conventional Q-
learning is unable to find a sequence with a reward of larger than
r = 4.
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[38]. This difficulty with Q-learning is fundamental. As487
the system becomes larger, the deficiency of Q-learning488
will become more apparent and pronounced. To address489
the cyberattack and defense problem for large-scale power490
grids, invoking deep Q-learning is necessary.491

III. DEEP Q-LEARNING-BASED FORMULATION492
OF ATTACKER-DEFENDER GAME493

We introduce the deep Q-learning algorithm and exploit494
it to formulate and solve the attacker-defender stochastic495
zero-sum game problem. We also analyze the proposed496
defense strategy for smart power grids against cyberat-497
tacks. The zero-sum nature of the game dynamics stip-498
ulates that the deep Q-learning agent needs to learn (or499
approximate) only one Q function. It should be noted500
that, mathematically, convergence to a Nash equilibrium501
requires that all state-action pairs be visited infinitely often,502
which is practically infeasible. To obtain a reasonable503
functional approximation, a sufficiently large state-action504
space needs to be explored, which can be accomplished by505
deep Q-learning.506

A. Deep Q-learning solution to attacker-defender507
stochastic zero-sum game508

The core of deep Q-learning is an online multilayered509
neural network [39] that for any given state s outputs a510
vector of action values Q(s, ., .; θ), where θ denotes the511
set of parameters of the online network. Two foundations512
of the deep Q-learning algorithm are the target network513
and the use of experience replay. The target network, with514
parameter set θ∗, is the same as the online network, except515

that, for every c episodes, its parameters are copied from 516
the online network, θ∗

t = θt, which are kept fixed during 517
the c episodes. The target used by deep Q-learning can be 518
described as 519

Q∗
t = rt+1 + γ max

a
Qt(st+1, a1, a2; θ∗

t ). (11) 520

The deep Q-learning agent gets the initial state and com- 521
putes the Q-function values for all possible actions, which 522
in our problem is the transmission lines of the power 523
grid. We use the epsilon greedy method [40] to select 524
a proper action, where the action with the largest Q- 525
function value is chosen with the probability of 1 − ε, and 526
a random action is performed with the probability of ε. 527
The state, attacker, and defender’s actions; the next state 528
derived from the stochastic transition function; and the 529
gained reward are stored for some time. These data are 530
then sampled uniformly from this memory bank to update 531
the network, which is called experience replay, as some 532
random batches of transition are sampled. The difference 533
between the target Q function and the predicted Q function 534
is calculated as 535

error = Q∗
t − Qt(st+1, a1, a2; θt), (12) 536

where a small error indicates a well-trained algorithm. 537
Typically, a gradient descent algorithm can be used to opti- 538
mize the online network parameter values to minimize the 539
error. The target network’s parameters are updated peri- 540
odically to match the ones of the online network. Both 541
the target network and experience replay can dramatically 542
improve the performance of the algorithm [38]. Using the 543
Q functions defined in Eqs. (5) and (6) for the stochas- 544
tic zero-sum game, we determine the optimal attacking 545
sequence so that the defender can choose the best defense 546
strategy. 547

The main difference between Q-learning and deep Q- 548
learning lies in the implementation of the Q table. In a 549
problem with a large number of state-action pairs, the Q 550
table becomes unmanageably large and impractical. This is 551
because the greater the number of rows and columns, the 552
more time it requires for the agents to explore the states 553
and to update their values. In deep Q-learning, the idea is 554
that, rather than mapping a state-action pair to a Q value 555
using the Q table, neural networks can be exploited to 556
map the states to the action–Q-value pairs. That is, instead 557
of visiting different state-action pairs and filling in the Q 558
table, a deep neural network is trained to approximate the 559
Q function. 560

B. Defensive strategy algorithm using deep Q-learning 561

Figure 5 presents the proposed algorithm for articulat- 562
ing a defense strategy to protect a smart power grid from 563
cyberattacks. The attacker and defender play a stochastic 564
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Stochastic Zero-Sum Game
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FIG. 5. Defensive strategy algorithm based on deep Q-
learning in a stochastic zero-sum game. Attacker and defender
are the two players of this game. Attacker uses the deep Q-
learning algorithm to find an optimal attack sequence to maxi-
mize the generation loss or transmission line outage, while the
defender updates its defense set based on the attacker’s previous
policy. Chosen actions of both players are given to the DCSIM-
SEP power flow simulator and the reward (cost) is then calculated
and returned to the players. Process continues until the defender’s
protection set remains unchanged for a number of cycles.
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zero-sum game with the defined objective of disabling a565
fixed number of transmission lines or maximizing (mini-566
mizing) the generation loss. The attacker attacks the power567
system while the defender protects some transmission568
lines. The payoff, which is either the generation loss or569
the number of downed transmission lines, is determined570
using DCSIMSEP based on the players’ actions. Both players571
receive the reward for (cost of) their actions. The attacker572
uses deep Q-learning to optimize the attack sequence.573
Once an optimal attacking strategy is reached, it is trans-574
mitted to the defender. The defense decision management575
unit will decide whether or not to update the protection set.576
More specifically, the decision unit will simply update the577
protection set with the sweet targets of the previous learn-578
ing process, which are the transmission lines that have the579
largest Q-function value for the current state. The defense580
decision unit will not update the protection set in the case581
of periodic alternation of sweet targets, which is the indi-582
cator of convergence of the algorithm. This procedure583
continues until a Nash equilibrium (equilibria) is reached.584

IV. RESULTS585

To demonstrate the workings and power of our deep586
Q-learning algorithm in generating optimal defense strate-587
gies against attacks, we use the benchmark W&W 6-bus588
and IEEE 30-bus systems. Specifically, for the relatively589
small W&W 6-bus system, the generation loss problem is590
studied in more detail with physical insights. For the larger591
IEEE 30-bus system, we focus on both the switching line592
(transmission line outage) and the maximum generation593

TABLE I. Simulation parameters for W&W 6-bus system
generation loss and IEEE 30-bus system generation loss and
switching line problems.

Parameters W&W6 gen IEEE30 switch IEEE30 gen

Trans. lines 11 41 41
Episodes 2e3 2e3 1e4
Attack length 5 4 5
Epsilon 1 1 1
Eps. decay 0.005 0.0008 0.005
Eps. min 0.01 0.001 0.01
Learn. rate 0.001 0.001 0.001
Disc. factor 0.7 0.7 0.8
Minibatch size 256 1024 256
FF. neurons 100 200 200
Attack succ. prob. 0.8 0.9 0.9

loss problems. All the simulations are carried out using 594
the MATLAB R2021b reinforcement learning toolbox on a 595
desktop PC with an Intel Core i7-6850K CPU and 128 596
GB of RAM. Table I lists the simulation parameter val- 597
ues for each problem. In our simulations, we assume that 598
an attack on a specific line is successful with a preassigned 599
probability that depends on the defender’s protection set, 600
which is updated after the attacker’s learning process. For 601
example, in the W&W 6-bus system, suppose the defender 602
protects line 5. If the attacker attacks any line other than 603
5, the probability of that line’s outage will be p . How- 604
ever, if the attacker attacks line 5, it will not go down, 605
since the defender protects it, but failures can occur with 606
the same probability p . The value of p may depend on 607
the available resources allocated to the defender or the 608
attacker at each time step. During the dynamic interplay 609
between the attacker and defender, the value of p is treated 610
as a constant. The reason lies in the tacit assumption that 611
both sides have equal access to the resources, so assigning 612
extra resources to any specific transmission line is disal- 613
lowed. It is worth noting that deep Q-learning generally 614
runs much faster than the equivalent Q-learning algorithm 615
on a per episode basis, because the computation complex- 616
ity of deep Q-learning can be significantly reduced when 617
neural networks are used instead of a table, as in con- 618
ventional Q-learning. In all cases, the core of our deep 619
Q-learning system is a neural network consisting of two 620
fully connected and two ReLu layers. Q8621

A. Optimal defense strategy for W&W 6-bus system 622
against generation loss 623

We study the maximum generation loss problem, a 624
stochastic zero-sum game in which the attacker aims 625
to maximize, but the defender aims to minimize, the 626
generation loss caused by the attacks, with probabilistic 627
state transitions. The attacker’s reward at each step is equal 628
to ¯Gloss defined in Eq. (9). The zero-sum nature of the 629
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FIG. 6. Effect of choosing an effective protection set in the
worst-case scenario of generation loss in the W&W 6-bus sys-
tem. Attacker uses deep Q-learning to find an optimal attack
sequence, while the defender updates its protection set accord-
ing to the attacker’s policy. Starting from a random protection
set {7, 11}, the defender finds the optimal defense set to be {2, 5},
which causes the worst-case scenario of the generation loss to be
reduced by %13.41.

F6:1
F6:2
F6:3
F6:4
F6:5
F6:6
F6:7
F6:8

game dynamics stipulates that the defender’s reward must630
be − ¯Gloss. To be concrete, we assume that the defender is631
able to defend two lines at a time, while the attacker can632
attack up to five lines in a sequential manner. The spe-633
cific numbers can be chosen arbitrarily. Figure 6 depicts634

¯Gloss per episode for different protection sets. First, for a635
random protection set {7, 11}, we apply deep Q-learning636
to find the attacker’s sweet targets, the transmission lines637
that have the largest Q-function value for the initial state.638
From the specific random protection set, the sweet targets639
are determined to be lines 1 and 2, so the protection set is640
updated to lines {1, 2}. We apply deep Q-learning again,641
resulting in lines 1 and 5 becoming the updated sweet tar-642
gets. For the protection set {1, 5}, the new sweet targets are643
lines 2 and 5. Further steps of the game plan will result in644
a Nash equilibrium of 159.93 MW generation loss, alter-645
nating between the protection sets {1, 5} and {2, 5}, which646
represent the solution of the optimal defense sets to this647
problem. Intuitively, the derived sequence of the attacker’s648
actions and the protection set constituting a Nash equi-649
librium can be interpreted as pairs of actions from which650
neither the attacker nor the defender is inclined to deviate651
unilaterally. As shown in Fig. 6, this optimal choice of the652
protection set results in a 13.41% decrease in the worst-653
case scenario of generation loss where the attacker plays654
the optimal sequence strategy.655

B. Optimal defense strategy for IEEE 30-bus system656
against attacks on switching lines657

In the switching line problem, the attacker has a fixed658
objective of disabling a specific set of transmission lines.659
Our concrete setting is that the defender is able to defend660
up to three lines at a time, while the attacker can attack661

up to four lines sequentially with the AO set to five lines. 662
The reward function is given by Eq. (10) with r1 = 10 663
and r2 = 1. Starting with a random protection set {1, 2, 3}, 664
we apply our deep Q-learning algorithm and identify the 665
sweet targets as lines 15 and 16. The protection set is then 666
updated to {15, 16}, and the worst-case scenario reward is 667
decreased significantly, as shown in Fig. 7. Further gam- 668
ing steps result in the protection set {15, 16} as the Nash 669
equilibrium. The intuitive reason is that, when protecting 670
lines {15, 16}, the attacker is not able to find a sequence 671
that will result in a large instantaneous outage. As a result, 672
the attack receives a much smaller reward compared to the 673
case when the defender defends a random protection set. 674
This phenomenon is helpful for the defender in the sce- 675
nario where the generation loss can be compensated for by 676
somewhere else for the demand, making the transmission 677
line outage a priority. 678

C. Optimal defense strategy for IEEE 30-bus system 679
against attack-induced generation loss 680

We demonstrate the power of our deep Q-learning 681
algorithm to solve the generation loss problem for the 682
IEEE 30-bus system, which otherwise is not solvable using 683
conventional tabular Q-learning. Figure 8 shows ¯Gloss per 684
episode for different protection sets, where the simula- 685
tion setting is that the defender is able to defend up to 686
three lines at a time, while the attacker can attack up to 687
five lines sequentially. Starting from a random protection 688
set {1, 2, 3}, with the worst-case scenario generation loss 689
per episode of 74.87 MW, the protection set evolves from 690
{16, 11, 14} to {16, 11, 15} and finally to the optimal pro- 691
tection set {16, 15, 28} that results in 50.49 MW generation 692

FIG. 7. Evolution of reward function values during the learn-
ing phase in the switching line problem in the IEEE 30-bus
system for a random and an optimal protection set. While the
defender chooses a random protection set {1, 2, 3}, the attacker
finds an optimal sequence to obtain the reward of r = 10.4 [cal-
culated by Eq. (10) with r1 = 10 and r2 = 1]. After a number of
cycles, the defender chooses {15, 16} as its protection set. As a
result, the attacker fails to find a sequence with a reward of more
than r = 2.6.
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FIG. 8. Optimal protection set against the worst-case scenario
of generation loss in the IEEE 30-bus system. Defender chooses
a random protection set {1, 2, 3}, whereas the attacker finds an
optimal policy to maximize the generation loss. After a number
of cycles, the defender chooses {16, 15, 28} as its protection set
and, as a result, the worst-case scenario generation loss caused
by the optimal attack sequence is reduced by 48.28%.
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loss. Using the optimal protection set can result in 48.28%693
mitigation of the worst-case generation loss, even if the694
attacker chooses the optimal attacking sequence.695

It is worth noting that the IEEE 30-bus system simula-696
tion is used to demonstrate that conventional Q-learning697
is unable to deal with this system, while our deep Q-698
learning can. The system is only regarded as “large” in699
a relative sense: it is much larger than the W&W 6-bus700
benchmark system. Much larger systems are available,701
e.g., the IEEE 300-bus or IEEE 3000-bus systems, which702
can be simulated using specific power-grid software, such703
as Gridlab-D. Deep RL methods are applicable to these704
larger systems, but the required computations are beyond705
our current capability.706

D. Comparison with alternative RL algorithms707

We compare the performance of our deep Q-learning708
algorithm with three widely used RL algorithms for dis-709
crete state-action space systems: PG, AC, and PPO. The710
PG algorithm [41] is a rudimentary policy-based model-711
free online on-policy method, while the AC algorithm aims712
to optimize the policy (actor) directly and train a critic713
to estimate the return or future rewards [42]. PPO [43]714
is an actor-critic model-free online on-policy algorithm715
that alternates between data sampling by interacting with716
the environment and optimization of a clipped objective717
function, which leads to improved training stability by lim-718
iting the size of the policy change at each step. We set719
the learning rate, discount factor, and other applicable key720
simulation parameters to the same values as in deep Q-721
learning. The actor and critic networks in both the PPO722
and AC algorithms have the same structure as the critic723
network in our deep Q-learning algorithm and the actor724

FIG. 9. Comparison with representative existing RL algo-
rithms. Shown is the performance comparison of the deep Q-
learning with PG, AC, and PPO algorithms for the generation
loss problem in the IEEE 30-bus system. Maximum genera-
tion loss caused by the optimal attack sequences derived by
the PPO, AC, and PG agents is 22.24 MW, while our deep
Q-learning agent is able to obtain 50.49 MW. While the deep
Q-learning algorithm takes a longer time to converge, reliability
and efficiency are guaranteed.
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network in the PG algorithm for fair comparison. The pro- 725
tection set for all algorithms is set to {16, 15, 28}, which 726
is the Nash equilibrium in Sec. IV C. Figure 9 shows that 727
the maximum generation loss caused by the attacker in 728
the PPO, AC, and PG algorithms converges to 22.24 MW, 729
while that in our deep Q-learning algorithm converges to 730
50.49 MW. Generally, the deep Q-learning algorithm takes 731
a long time to converge, but the reliability and efficiency 732
compensate for the slow convergence since real-time com- 733
putation is not needed in strategy planning. Moreover, due 734
to the large size of action and state spaces, asymmetric and 735
stochastic state transitions, and insufficient exploration of 736
the state space intrinsic to the other algorithms, our deep 737
Q-learning algorithm significantly outperforms the PPO, 738
AC, and PG algorithms. 739

V. DISCUSSION 740

The problem of devising optimal defense strategies to 741
protect smart power grids from cyberattacks is of signifi- 742
cant current interest. Given a grid system, a general prin- 743
ciple is to simulate attacks to identify the scenario(s) that 744
can result in the most severe damage to define the best pos- 745
sible defense strategies. This attacker-defender interaction 746
problem can be modeled as a stochastic zero-sum game, 747
for which machine learning can provide effective solutions. 748
In recent years, conventional RL, in particular, Q-learning, 749
has been applied to the attacker-defender game problem, 750
but a fundamental shortcoming is the exponentially grow- 751
ing state space as the size of the system increases linearly. 752
We articulate a general deep Q-learning framework to 753
solve the game problem in arbitrarily large power-grid sys- 754
tems. We demonstrate that our deep Q-learning algorithm 755
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typically leads to a Nash equilibrium, and the correspond-756
ing strategy represents the optimal solution. We test the757
proposed framework under different attack-defense sce-758
narios for the W&W 6-bus system used in the current759
Q-learning literature and the relatively large IEEE 30-bus760
system that cannot be solved with the conventional Q-761
learning algorithm. We also compare the results of our762
deep Q-learning algorithm to those from three alterna-763
tive but state-of-the-art RL algorithms and demonstrate the764
superiority of our method.765

Immediate future work is expanding the deployment of766
the deep RL algorithms to a general sum problem, in which767
both the attacker and defender have limited resources that768
they can use for their actions. The reward function would769
also be different from the one used in this paper, where the770
defender attempts to mitigate the consequences, whereas771
the attacker has a set objective. The results in this paper772
suggest that deep Q-learning can be effective at address-773
ing the general sum game to devise the optimal resource774
allocation policy.775
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APPENDIX: A DETAILED DESCRIPTION OF THE782
DEEP Q-LEARNING METHOD783

Deep Q-learning is a model-free framework in which784
the agent uses a neural network architecture to train a785
critic to estimate the future cumulative rewards charac-786
terizing how valuable one action is at each state. While787
there are reinforcement learning methods for continuous788
action spaces (e.g., deep deterministic policy gradient789
[44] and twin-delayed deep deterministic policy gradient790
[45]), deep Q-learning is only applicable to discrete action791
spaces.792

The structure of the deep Q-learning method in our work793
is shown Fig. 10, which illustrates what happens inside the794
attacker block in Fig. 5. Modeling the attacker-defender795
interaction as a zero-sum game has the advantage of learn-796
ing a single Q function (in a general sum game, learning797
multiple Q functions would be necessary). For each state798
input, the deep Q-learning structure returns an approxima-799
tion of the Q function for that state and all possible actions.800
In our problem, by “state” we mean the state of the trans-801
mission lines in the power grid, which is denoted as a802
binary-valued vector. The attacker’s action is chosen from803
the set A = {1, 2, 3, . . .}, where action i means attacking804
transmission line i. The defender’s action is a set consisting

of n transmission lines denoted as the protection set. The 805
environment block in Fig. 10 represents the power grids 806
studied in this paper. As described in the main text, we 807
employ DCSIMSEP, a dc load flow simulator of cascading 808
(separation) in power systems, to simulate the dynamics 809
of the power grid. Using our modified DCSIMSEP code, we 810
generate the observation and rewards for each attack (and 811
defense) actions and feed them to the algorithm in the next 812
step. 813

A deep Q-learning agent is represented by a critic 814
neural network. During the training phase, this critic is 815
trained to approximate the expectation of the cumulative 816
future rewards. The critic neural network is parameterized. 817
During training, the agent tunes the parameter values to 818
improve the accuracy of the estimation. The neural net- 819
work structure consists of two fully connected and two 820
ReLu layers (as detailed in Table I). In particular, a fully 821
connected layer multiplies the input by a weight vector 822
and adds a bias into it, which is similar to a nonlinear 823
principal component analysis for improving the estima- 824
tion accuracy. The ReLu layers set the negative values of 825
the input to zero and perform a threshold operation on the 826
input; these are nonlinear transformations to expedite the 827
training process. 828

Here, we model the attacker and defender interaction as 829
a zero-sum game, with the goal of disabling a fixed num- 830
ber of transmission lines or maximizing (minimizing) the 831
generation loss. Both players receive the reward for (or 832
cost of) their actions. The attacker uses deep Q-learning to 833
optimize the attack sequence. During the training process, 834
the agent explores the state space, i.e., the attacker attacks 835
different transmission lines to observe the results. This 836
exploration follows a standard greedy algorithm method, 837
where sometimes the attacker launches random attacks and 838
at other times the attack is based on what the attacker 839
has learned so far. The past experiences are stored using 840
an experience buffer. The critic neural network is updated 841
based on a pool of experiences randomly sampled from this 842
buffer. Once an optimal attacking strategy is reached, it is 843
transmitted to the defender, and the defender will update its 844
protection set to be better prepared against future attacks. 845
This process continues until the Nash equilibrium of the 846
game is reached. 847

We perform the simulation using MATLAB’s reinforce- 848
ment learning toolbox. For the deep Q-learning algorithm, 849
we use the rlDQNAgent object. The options set for rlDQ- 850
NAgentOptions are listed in Table I. The state space 851
is defined using rlNumericSpec, and the action space 852
type is selected as rlFiniteSetSpec. No external lower 853
or upper limits are applied to these spaces. The envi- 854
ronment (env object) is customized using the modified 855
DCSIMSEP. Eventually, the critic is a rlQValueRepresen- 856
tation object with the neural network layer depicted in 857
Fig. 10. The codes and simulation results are available at 858
Github [46]. 859
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FIG. 10. Structure of deep Q-learning algorithm used in this paper. Structure describes the processes inside the attacker block in Fig.
5. Environment block contains the power grids simulated using our modified DCSIMSEP algorithm. DCSIMSEP generates the observation
and rewards for each attack (and defense), which are fed to the algorithm in the next step. Through interacting with the environment,
the critic returns an approximation of the Q function for the input state (the state of transmission lines) and all possible actions (attack
actions or protection sets). This critic neural network is parameterized. During training, the agent tunes the parameter values to make
the estimation more accurate. Critic consists of two fully connected and two ReLu layers, the specifications of which are listed in Table
I. Attacker uses this algorithm to optimize the attack sequence. Once an optimal attacking strategy is reached, the defender will update
its protection set (Fig. 5) to be better prepared against future attacks. This repeats until the optimal protection set has been found.
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